Linear Regression Cost Function & Gradient descent
1. Linear Regression
2. Cost Function
Choose so that is close to for our training examples
Title | fmt |
---|---|
Hypothesis | |
Parameters | |
Cost Function | |
Goal |
3. Simplified Fmt
= 0
hypothesis function cost function
4. Cost function visable
把 x, y 想象成向量,确定的向量,向量再想象为一个确定的数,总之它是一个二次函数,抽象的想一下,会不会理解
- contour plots
- contour figures
5. Gradient descent target
6. Gradient descent visable
Convex function
7. Gradient descent algorithm
$ \alpha $ : learning rate
8. Gradient descent only $ \theta_{1} $
9. Linear Regression Model
9.1 Batch Gradient Descent
Batch : Each step of gradient descent uses all the training examples
Coursera Learning Notes
Checking if Disqus is accessible...