Support Vecor Machine, 自一诞生便由于它良好的分类性能席卷了机器学习领域,并牢牢压制了神经网络领域好多年。 如果不考虑集成学习的算法,不考虑特定的训练数据集,在分类算法中的表现SVM说是排第一估计是没有什么异议的.
1. SVM 间隔 Margin
- 支持向量机(SVM)的目标是什么?
- 什么是分离超平面, Margin
详情可参 : 机器学习系列(13)_SVM碎碎念part1:间隔
认识一下SVM中很重要的一个概念:Margin,也就是间隔。
2. SVM 向量与空间距离
- 从向量到距离计算 (向量定义、计算方向向量、向量的和与差、向量内积、向量正交投影)
- SVM的超平面 (1 计算点到超平面距离、2 计算超平面的间隔)
详情可参 : 机器学习系列(14)_SVM碎碎念part2:SVM中的向量与空间距离
回顾了一下向量中的一些概念,依用向量的知识,怎么帮助我们去计算超平面间隔,有兴趣的同学请接着看part3
$ w^{T}X = 0 $, w
3. SVM 如何找到最优分离超平面
- 如何找到最优超平面
- 如何计算两超平面间的距离
- SVM的最优化问题是什么
找到两个平行超平面,可以划分数据并且两平面之间没有数据点
两个超平面之间的距离最大化
详情可参 : 机器学习系列(15)_SVM碎碎念part3:如何找到最优分离超平面
4. SVM 无约束最小化问题
详情可参 : 机器学习系列(21)_SVM碎碎念part4:无约束最小化问题
5. SVM 凸函数与优化
详情可参 : 机器学习系列(22)_SVM碎碎念part5:凸函数与优化
6. SVM 对偶和拉格朗日乘子
详情可参 : 机器学习系列(23)_SVM碎碎念part6:对偶和拉格朗日乘子
Checking if Disqus is accessible...