Tensorflow 首先要定义神经网络的结构, 然后再把数据放入结构当中去运算 和 training.
计算图
因为 TensorFlow 是采用数据流图(data flow graphs)来计算, 所以首先我们得创建一个数据流图, 然后再将我们的数据(数据以张量(tensor)的形式存在)放在数据流图中计算.
- Nodes 在图中表示数学操作
- Edges 在图中则表示在节点间相互联系的多维数据数组,即张量(tensor)
训练模型时 tensor 会不断的从数据流图中的一个节点 flow 到另一节点, 这就是 TensorFlow 名字的由来.
Tensor 张量意义
张量(Tensor): 张量有多种.
- 零阶张量为 纯量或标量 (scalar) 也就是一个数值. 比如
[1]
- 一阶张量为 向量 (vector), 比如 一维的
[1, 2, 3]
- 二阶张量为 矩阵 (matrix), 比如 二维的
[[1, 2, 3],[4, 5, 6],[7, 8, 9]]
以此类推, 还有 三阶 三维的 …
Checking if Disqus is accessible...