抱歉,您的浏览器无法访问本站

本页面需要浏览器支持(启用)JavaScript


了解详情 >

blaire

👩🏻‍💻ブレア🥣

Classifier in Keras
Classifier in Keras

data preprocessing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
from keras.datasets import mnist

# download the mnist to the path '~/.keras/datasets/' if it is the first time to be called
# X shape (60,000 28x28), y shape (10,000, )
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# data pre-processing
X_train = X_train.reshape(X_train.shape[0], -1) / 255. # normalize
X_test = X_test.reshape(X_test.shape[0], -1) / 255. # normalize

y_train = np_utils.to_categorical(y_train, num_classes=10)
y_test = np_utils.to_categorical(y_test, num_classes=10)

print(X_train[1].shape)
"""
(784,)
"""

#print(y_train[:3])
"""
[[ 0. 0. 0. 0. 0. 1. 0. 0. 0. 0.]
[ 1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
[ 0. 0. 0. 0. 1. 0. 0. 0. 0. 0.]]
"""

1. build model

1
2
3
4
5
6
7
8
9
10
11
import numpy as np

np.random.seed(1337) # for reproducibility

from keras.datasets import mnist

from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import RMSprop

Another way to build your neural net

1
2
3
4
5
6
7
8
# Another way to build your neural net
model = Sequential([
Dense(32, input_dim=784),
Activation('relu'),
Dense(10),
Activation('softmax'),
])
model.summary()
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
dense_5 (Dense)              (None, 32)                25120     
_________________________________________________________________
activation_5 (Activation)    (None, 32)                0         
_________________________________________________________________
dense_6 (Dense)              (None, 10)                330       
_________________________________________________________________
activation_6 (Activation)    (None, 10)                0         
=================================================================
Total params: 25,450
Trainable params: 25,450
Non-trainable params: 0
_________________________________________________________________
1
2
# Another way to define your optimizer
rmsprop = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)

2. compile model

1
2
3
4
# We add metrics to get more results you want to see
model.compile(optimizer=rmsprop,
loss='categorical_crossentropy',
metrics=['accuracy'])

3. train model

1
2
3
4
5
6
7
8
9
10
11
print('Training ------------')
# Another way to train the model
model.fit(X_train, y_train, epochs=2, batch_size=32)

# """
# Training ------------
# Epoch 1/2
# 60000/60000 [==============================] - 2s - loss: 0.3506 - acc: 0.9025
# Epoch 2/2
# 60000/60000 [==============================] - 2s - loss: 0.1995 - acc: 0.9421
# """

4. evaluate model

1
2
3
4
5
6
7
8
9
10
11
12
13
14
print('\nTesting ------------')
# Evaluate the model with the metrics we defined earlier
loss, accuracy = model.evaluate(X_test, y_test)

print('test loss: ', loss)
print('test accuracy: ', accuracy)

"""
Testing ------------
9760/10000 [============================>.] - ETA: 0s

test loss: 0.1724540345
test accuracy: 0.9489
"""

Reference

Comments